Interactions between Homotopy and Topological Groups in Covering (C, R) Space Embeddings

نویسندگان

چکیده

The interactions between topological covering spaces, homotopy and group structures in a fibered space exhibit an array of interesting properties. This paper proposes the formulation finite components compact Lindelof variety (C, R) spaces. spaces form Noetherian structure under injective embeddings. locally path-connected establish set groups, maintaining homomorphism. homeomorphic embedding base into non-compact generates two classes fibers based on location identity elements homomorphic groups. A general fiber gives rise to discrete fundamental groups embedded subspace. path-homotopy equivalence is admitted by multiple if, only homomorphism preserved single maintains group. If identity-rigid variety, then fiber-restricted symmetric translations within successfully admits involving kernel. projections component formation 2-simplex embeddings generate prime order cyclic Interestingly, 2-simplexes dense subspace assist determining simple connectedness components, preserves structure.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Local Homotopy Properties of Topological Embeddings in Codimension Two

A b str act . Suppose N is an (n− 2)-manifold topologically embedded in an n-manifold M . Chapman and Quinn have shown that N is locally flat in M provided that the local homotopy groups of M − N at points of N are infinite cyclic and that all the higher local homotopy groups of M−N at points of N vanish. The main theorem in this paper asserts that it is only necessary to assume the homotopy co...

متن کامل

Covering Groups of Non-connected Topological Groups Revisited

All spaces are assumed to be locally path connected and semi-locally 1-connected. Let X be a connected topological group with identity e, and let p : X̃ → X be the universal cover of the underlying space of X. It follows easily from classical properties of lifting maps to covering spaces that for any point ẽ in X̃ with pẽ = e there is a unique structure of topological group on X̃ such that ẽ is th...

متن کامل

The Covering Homotopy Extension Problem for Compact Transformation Groups

It is shown that the orbit space of universal (in the sense of Palais) G-spaces classifies G-spaces. Theorems on the extension of covering homotopy for G-spaces and on a homotopy representation of the isovariant category ISOV are proved . DOI: 10.1134/S0001434612110016

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Symmetry

سال: 2021

ISSN: ['0865-4824', '2226-1877']

DOI: https://doi.org/10.3390/sym13081421